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Introduction

Time-series data generally do not have human recognizable patterns and require

specialists for annotation/labeling.

Some image-based contrastive learning methods are not able to work on time-series

data for the following reasons:

= They may not able to address the temporal dependencies of data.

=  Some augmentation techniques used for image generally cannot fit well with time-series data.



= A framework, Time-Series representation learning via Temporal and Contextual Contrasting

(TS-TCC), were proposed

= Employing simple data augmentations that can fit any time-series data to create two different, but correlated views

of input data.
=  Temporal contrasting module to learn robust representations by designing a tough cross-view prediction task.

=  Contextual contrasting module to further learn discriminative representations.
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Data augmentation

m Contrastive methods try to maximize the similarity among different views of the

same sample, while minimizing its similarity with other samples.

= In this paper, two augmentations were proposed, such that one is weak and the other

1s strong.
= Weak: jitter-and-scale, adding random variation to the signal and scale up its magnitude.

= Strong: permutation-and-jitter, splitting signal into a number of segments and randomly shuffling them;

next, a random jittered 1s added to the permuted signal.

= For each sample x, we denote it strongly augmented view as x°, and its weakly

augmented view as x".



* Model

m Encoder
= 3-block convolution architecture.
= Maps x into a high-dimensional latent representation z = f,,.(x).

= We get z° for the strong augmented views, and z" for the weak augmented views.
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Temporal contrasting

m Extracts temporal features in the latent space with an autoregressive model.

= Autoregressive model f,,- summarizes all z., into a context vector ¢; = f,,-(Z<¢).

= The context vector ¢; 1s used to predict the timesteps from z;,; to Z; .

= Cross-view prediction task

= Using the context of the strong augmentation ¢/ to predict the future timesteps of the weak augmentation

Z;‘-}!-k’ and ViCC versa. Contexlual Contrasting L(’(
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Two losses
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Using Transformer as the autoregressive model.

= Pre-norm residual connection: for stable gradients.

= Add atoken c to the input whose act as a representative context vector in the output (Like [CLS] in BERT).
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Contextual contrasting
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augmented views, and thus have 2N contexts.

= Positive C§+ : comes from the other augmented view of the same nput (2).

= Negative ¢ : from other inputs within same batch (2N-2).

Contrastive loss
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m Overall self-supervised loss

L=2 -(Lyc+ Lrc) + 22 Lee

A4, A, are fixed scalar hyperparameters.



Experimental results

= Datasets
= Human Activity Recognition (HAR): 6 activities, ex. walking, standing,...
= Sleep Stage Classification (Sleep-EDF): 5 classes, ex. wake, rapid eye movement,...
= Epilepsy Seizure Prediction (Epilepsy): 2 classes, ex. True / False

= Fault Diagnosis (FD): 4 different working conditions, and each contains 3 classes: healthy, inner fault,

and outer fault.

Dataset | # Train #Test Length # Channel # Class

HAR 7352 2947 128 9 6
Sleep-EDF | 25612 8910 3000 1
Epilepsy 9200 2300 178 1
FD 8184 2728 5120 1
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Baselines

= Random initialization: training a linear classifier on top of randomly initialized encoder.

= Supervised: supervised training of both encoder and classifier model.

=  SSL-ECG: self-supervised learning through recognition of 6 different transformations.

=  CPC: contrastive predictive coding, pretrained by predicting the latent vector on future timesteps.

=  SimCLR: using time-series specific augmentations to adapt SimCLR.

Evaluation metrics
= Accuracy (ACC)

= Macro-averaged F1-score (MF1): Arithmetic mean of all the per-class F1 scores.



m TS-TCC v.s. baseline methods

= TS-TCC outperforms all the three state-of-the-art methods.

=  Contrastive methods generally achieve better results than the pretext-based method, which reflects the power of

invariant features learned by contrastive methods. (CPC, SimCLR, TS-TCC <-> SSL-ECQG)

= CPC method shows better results than SimCLR, indicating that temporal features are more important than

general features in time-series data.

HAR Sleep-EDF Epilepsy

Baseline ACC MFI ACC MFI ACC MFI

Random Initialization 57.89+5.13 55.45+5.49 | 35.61+£6.96 23.80+7.96 | 90.26£1.77 81.12+4.22
Supervised 90.14+2.49 90.31+2.24 | 83.41+1.44 74.78+0.86 | 96.66+0.24 94.52+0.43
SSL-ECG [P. Sarkar, 2020] | 65.34+1.63 63.75+1.37 | 74.58+£0.60 65.44+0.97 | 93.72+0.45 89.15+0.93
CPC [Oord et al., 2018] 83.85+£1.51 83.27%+1.66 | 82.82+£1.68 73.94x1.75 | 96.61+0.43 94.44+0.69
SimCLR [Chen er al., 2020] | 80.97+2.46 80.19+2.64 | 7891£3.11 68.60+2.71 | 96.05+0.34 93.53+0.63
TS-TCC (ours) 90.37+0.34 90.38+0.39 | 83.00+0.71 73.57+0.74 | 97.23+0.10 95.54+0.08

Table 2: Comparison between our proposed TS-TCC model against baselines using linear classifier evaluation experiment.
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= Semi-supervised Training

= Supervised training v.s. TS-TCC

= Training the model with 1%, 5%, 10%, 50%, and 75% of randomly selected instances of the training data.
= TS-TCC (FT): Fine-tuned the pretrained encoder with few labeled samples.

= TS-TCC (FT) achieves significantly better performance than supervised training with only 1% of labeled data.
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» Transfer Learning Experiment

=  Fault Diagnosis (FD): Containing 4 different working condition, each has different characteristics from the other
working conditions.
= Training the model on one condition (source domain) and test it on another condition (target domain).

= Supervised v.s. TS-TCC

| A~B A-C A-D B—»A B-C B-=D C—»A C-»B C-»D D-A D-B D-=C | AVG

Supervised 3438 4494 3457 5293 63.67 99.82 5293 8402 8354 5315 9956 6243 | 63.83
TS-TCC(FT) | 43.15 51.50 4274 4798 7038 9930 38.89 9831 9938 5191 9996 70.31 | 67.82
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Ablation study

TC-only: predict the future timesteps of the same augmented view.

TC + X-Aug: TC + adding the cross-view prediction.

TC + X-Aug + CC (TS-TCC): proposed TS-TCC model.

TS-TCC (Weak only): generate two different views from the weak augmentation.

TS-TCC (Strong only): generate two different views from the strong augmentation.

HAR | Sleep-EDF | Epilepsy
Component ACC MFI | ACC MFI | ACC MFI
TC only 8276150 82.17+1.64 | 80.55+£0.39 70.99+0.86 | 94.39+1.19 90.93+1.41
TC + X-Aug 87.86x1.33 87.91+1.09 | 81.58+£1.70 71.88+1.71 | 95.56+0.24 92.57+0.29
TS-TCC (TC + X-Aug + CC) | 90.37+£0.34 90.38+0.39 | 83.00+0.71 73.57+0.74 | 97.23+£0.10 95.54+0.08
TS-TCC (Weak only) 76.55+3.59 75.14+4.66 | 80.90+1.87 7251+1.74 | 97.18+0.17 95.47+0.31
TS-TCC (Strong only) 60.23+3.31 56.15+4.14 | 78.55+2.94 68.05+1.87 | 97.14+0.23 95.39+0.29
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Conclusions

Temporal contrasting module learns robust temporal features by applying a tough

cross-view prediction task.

Contextual contrasting module to learn discriminative features upon the learned

robust representations.

TS-TCC shows high efficiency on few-labeled data and transfer learning scenarios.
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Thank you for your attention.



