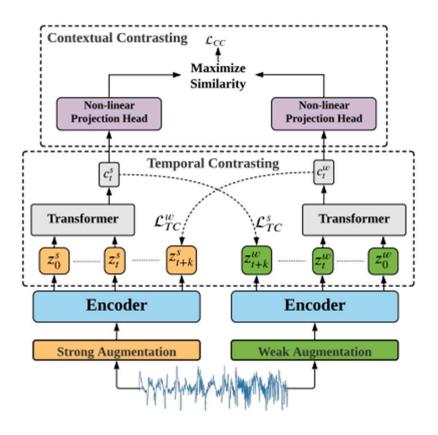
Time-Series Representation Learning via Temporal and Contextual Contrasting

Emadeldeen Eldele , Mohamed Ragab , Zhenghua Chen, Min Wu, Chee KeongKwoh , Xiaoli Li and Cuntai Guan

IJCAI 2021

- Time-series data generally do not have human recognizable patterns and require specialists for annotation/labeling.
- Some image-based contrastive learning methods are not able to work on time-series data for the following reasons:
 - They may not able to address the temporal dependencies of data.
 - Some augmentation techniques used for image generally cannot fit well with time-series data.

- A framework, Time-Series representation learning via Temporal and Contextual Contrasting (TS-TCC), were proposed
 - Employing simple data augmentations that can fit any time-series data to create two different, but correlated views of input data.
 - **Temporal contrasting** module to learn robust representations by designing a tough cross-view prediction task.
 - **Contextual contrasting** module to further learn discriminative representations.



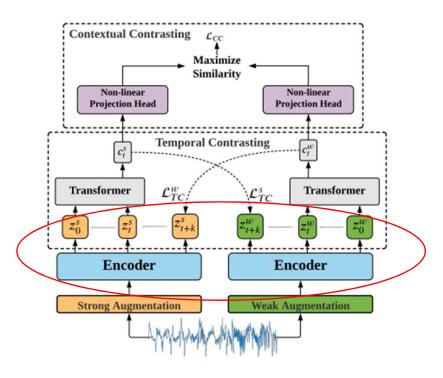
Data augmentation

- Contrastive methods try to maximize the similarity among different views of the same sample, while minimizing its similarity with other samples.
- In this paper, two augmentations were proposed, such that one is weak and the other is strong.
 - Weak: jitter-and-scale, adding random variation to the signal and scale up its magnitude.
 - Strong: permutation-and-jitter, splitting signal into a number of segments and randomly shuffling them; next, a random jittered is added to the permuted signal.
- For each sample x, we denote it strongly augmented view as x^s , and its weakly augmented view as x^w .

Model

Encoder

- 3-block convolution architecture.
- Maps x into a high-dimensional latent representation $z = f_{enc}(x)$.
- We get z^s for the strong augmented views, and z^w for the weak augmented views.



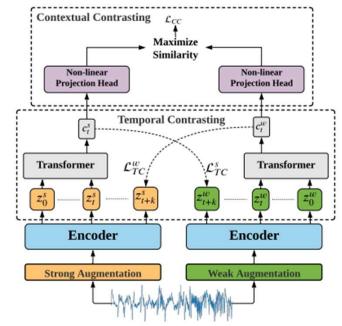
Temporal contrasting

Extracts temporal features in the latent space with an autoregressive model.

- Autoregressive model f_{ar} summarizes all $z_{\leq t}$ into a context vector $c_t = f_{ar}(z_{\leq t})$.
- The context vector c_t is used to predict the timesteps from z_{t+1} to z_{t+k} .
- Cross-view prediction task

 Z_{t+k}^{W} , and vice versa.

• Using the context of the strong augmentation c_t^s to predict the future timesteps of the weak augmentation



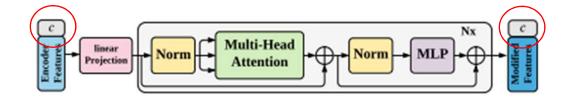
Two losses

$$\mathcal{L}_{TC}^{s} = -\frac{1}{K} \sum_{k=1}^{K} \log \frac{\exp((\mathcal{W}_{k}(c_{t}^{s}))^{T} z_{t+k}^{w})}{\sum_{n \in \mathcal{N}_{t,k}} \exp((\mathcal{W}_{k}(c_{t}^{s}))^{T} z_{n}^{w})}$$
(1)

$$\mathcal{L}_{TC}^{w} = -\frac{1}{K} \sum_{k=1}^{K} \log \frac{\exp((\mathcal{W}_{k}(c_{t}^{w}))^{T} z_{t+k}^{s})}{\sum_{n \in \mathcal{N}_{t,k}} \exp((\mathcal{W}_{k}(c_{t}^{w}))^{T} z_{n}^{s})}$$
(2)

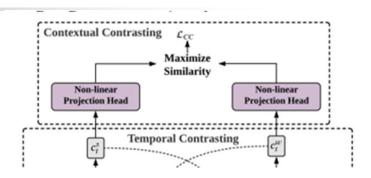
• Using Transformer as the autoregressive model.

- Pre-norm residual connection: for stable gradients.
- Add a token *c* to the input whose act as a representative context vector in the output (Like [CLS] in BERT).



Contextual contrasting

- Aims to learn more discriminative representations.
 - It starts with a non-linear transformation to the context.



- Given a batch *N* samples, we will have two contexts for each sample from its two augmented views, and thus have 2*N* contexts.
 - Positive $c_t^{i^+}$: comes from the other augmented view of the same input (2).
 - Negative $c_t^{i^-}$: from other inputs within same batch (2N-2).
- Contrastive loss

$$\mathcal{L}_{CC} = -\sum_{i=1}^{N} \log \frac{\exp\left(\sin\left(\boldsymbol{c}_{t}^{i}, \boldsymbol{c}_{t}^{i^{+}}\right)/\tau\right)}{\sum_{m=1}^{2N} \mathbb{1}_{[m\neq i]} \exp\left(\sin\left(\boldsymbol{c}_{t}^{i}, \boldsymbol{c}_{t}^{m}\right)/\tau\right)},\tag{5}$$

Overall self-supervised loss

$$L = \lambda_1 \cdot (L_{TC}^s + L_{TC}^w) + \lambda_2 \cdot L_{CC}$$

 λ_1 , λ_2 are fixed scalar hyperparameters.

Experimental results

Datasets

- Human Activity Recognition (HAR): 6 activities, ex. walking, standing,...
- Sleep Stage Classification (Sleep-EDF): 5 classes, ex. wake, rapid eye movement,...
- Epilepsy Seizure Prediction (Epilepsy): 2 classes, ex. True / False
- Fault Diagnosis (FD): 4 different working conditions, and each contains 3 classes: healthy, inner fault, and outer fault.

Dataset	# Train	# Test	Length	# Channel	# Class	
HAR	7352	2947	128	9	6	
Sleep-EDF	25612	8910	3000	1	5	
Epilepsy	9200	2300	178	1	2	
FD	8184	2728	5120	1	3	

Baselines

- **Random initialization**: training a linear classifier on top of randomly initialized encoder.
- **Supervised**: supervised training of both encoder and classifier model.
- **SSL-ECG**: self-supervised learning through recognition of 6 different transformations.
- **CPC**: contrastive predictive coding, pretrained by predicting the latent vector on future timesteps.
- **SimCLR**: using time-series specific augmentations to adapt SimCLR.
- Evaluation metrics
 - Accuracy (ACC)
 - Macro-averaged F1-score (MF1): Arithmetic mean of all the per-class F1 scores.

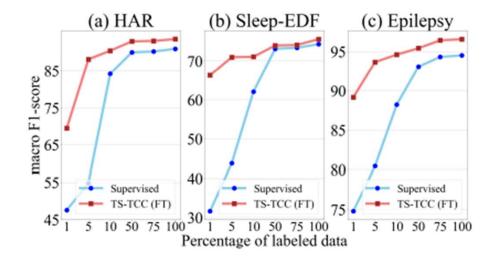
- TS-TCC v.s. baseline methods
 - TS-TCC outperforms all the three state-of-the-art methods.
 - Contrastive methods generally achieve better results than the pretext-based method, which reflects the power of invariant features learned by contrastive methods. (CPC, SimCLR, TS-TCC <-> SSL-ECG)
 - CPC method shows better results than SimCLR, indicating that temporal features are more important than general features in time-series data.

	H	AR	Sleep	-EDF	Epilepsy		
Baseline	ACC	MF1	ACC	MF1	ACC	MF1	
Random Initialization	57.89±5.13	55.45±5.49	35.61±6.96	23.80±7.96	90.26±1.77	81.12±4.22	
Supervised	90.14±2.49	90.31±2.24	83.41±1.44	74.78±0.86	96.66±0.24	94.52 ± 0.43	
SSL-ECG [P. Sarkar, 2020]	65.34±1.63	63.75±1.37	74.58±0.60	65.44±0.97	93.72±0.45	89.15±0.93	
CPC [Oord et al., 2018]	83.85±1.51	83.27±1.66	82.82±1.68	73.94±1.75	96.61±0.43	94.44±0.69	
SimCLR [Chen et al., 2020]	80.97±2.46	80.19±2.64	78.91±3.11	68.60±2.71	96.05±0.34	93.53±0.63	
TS-TCC (ours)	90.37±0.34	90.38±0.39	83.00±0.71	73.57±0.74	97.23±0.10	$95.54{\pm}0.08$	

Table 2: Comparison between our proposed TS-TCC model against baselines using linear classifier evaluation experiment.

Semi-supervised Training

- Supervised training v.s. TS-TCC
- Training the model with 1%, 5%, 10%, 50%, and 75% of randomly selected instances of the training data.
- TS-TCC (FT): Fine-tuned the pretrained encoder with few labeled samples.
- TS-TCC (FT) achieves significantly better performance than supervised training with only 1% of labeled data.



- Transfer Learning Experiment
 - Fault Diagnosis (FD): Containing 4 different working condition, each has different characteristics from the other working conditions.
 - Training the model on one condition (source domain) and test it on another condition (target domain).
 - Supervised v.s. TS-TCC

	$ A \rightarrow B$	A→C	$A \rightarrow D$	$B \rightarrow A$	$B \rightarrow C$	$B \rightarrow D$	$C \rightarrow A$	$C \rightarrow B$	$C \rightarrow D$	$D \rightarrow A$	$D \rightarrow B$	D→C	AVG
Supervised													
TS-TCC (FT)	43.15	51.50	42.74	47.98	70.38	99.30	38.89	98.31	99.38	51.91	99.96	70.31	67.82

• Ablation study

- **TC-only**: predict the future timesteps of the same augmented view.
- **TC** + **X**-Aug: TC + adding the cross-view prediction.
- TC + X-Aug + CC (TS-TCC): proposed TS-TCC model.
- **TS-TCC (Weak only)**: generate two different views from the weak augmentation.
- **TS-TCC (Strong only)**: generate two different views from the strong augmentation.

	H/	AR	Sleep	-EDF	Epilepsy		
Component	ACC	MF1	ACC	MF1	ACC	MF1	
TC only	82.76±1.50	82.17±1.64	80.55±0.39	$70.99 {\pm} 0.86$	94.39±1.19	90.93±1.41	
TC + X-Aug	87.86±1.33	87.91±1.09	81.58±1.70	71.88 ± 1.71	95.56±0.24	92.57±0.29	
TS-TCC (TC + X-Aug + CC)	90.37±0.34	90.38±0.39	83.00±0.71	73.57±0.74	97.23±0.10	95.54±0.08	
TS-TCC (Weak only)	76.55±3.59	75.14±4.66	80.90±1.87	72.51±1.74	97.18±0.17	95.47±0.31	
TS-TCC (Strong only)	60.23±3.31	56.15 ± 4.14	78.55±2.94	68.05 ± 1.87	97.14±0.23	95.39±0.29	

- Temporal contrasting module learns robust temporal features by applying a tough cross-view prediction task.
- Contextual contrasting module to learn discriminative features upon the learned robust representations.
- TS-TCC shows high efficiency on few-labeled data and transfer learning scenarios.

Thank you for your attention.